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Abstract

The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery requires accurate atmospheric compensation to

correctly disentangle its small contribution to the at-sensor radiance from other confounding factors. In spectral fitting SIF

retrieval approaches this compensation is estimated in a joint optimization of free variables when fitting the measured at-sensor

signal. Due to the computational complexity of Radiative Transfer Models (RTMs) that satisfy the level of precision required

for accurate SIF retrieval, fully joint estimations are practically inachievable with exact physical simulation. We present in

this contribution an emulator-based spectral fitting method neural network (EmSFMNN) approach integrating RTM emulation

and self-supervised training for computationally efficient and accurate SIF retrieval in the O2-A absorption band of HyPlant

imagery. In a validation study with in-situ top-of-canopy SIF measurements we find improved performance over traditional

retrieval methods. Furthermore, we show that the model predicts plausible SIF emission in topographically variable terrain

without scene-specific adaptations. Since EmSFMNN can be adapted to hyperspectral imaging sensors in a straightforward

fashion, it may prove an interesting SIF retrieval method for other sensors on airborne and spaceborne platforms.

1



Emulation-based self-supervised SIF retrieval in the

O2-A absorption band with HyPlant

Jim Buffata,d, Miguel Patob, Kevin Alonsoc, Stefan Auerb, Emiliano
Carmonab, Stefan Maierb, Rupert Müllerb, Patrick Rademsked, Uwe

Rascherd, Hanno Scharra
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Abstract

The retrieval of sun-induced fluorescence (SIF) from hyperspectral imagery
requires accurate atmospheric compensation to correctly disentangle its small
contribution to the at-sensor radiance from other confounding factors. In
spectral fitting SIF retrieval approaches this compensation is estimated in a
joint optimization of free variables when fitting the measured at-sensor signal.
Due to the computational complexity of Radiative Transfer Models (RTMs)
that satisfy the level of precision required for accurate SIF retrieval, fully
joint estimations are practically inachievable with exact physical simulation.
We present in this contribution an emulator-based spectral fitting method
neural network (EmSFMNN) approach integrating RTM emulation and self-
supervised training for computationally efficient and accurate SIF retrieval
in the O2-A absorption band of HyPlant imagery. In a validation study
with in-situ top-of-canopy SIF measurements we find improved performance
over traditional retrieval methods. Furthermore, we show that the model
predicts plausible SIF emission in topographically variable terrain without
scene-specific adaptations. Since EmSFMNN can be adapted to hyperspec-
tral imaging sensors in a straightforward fashion, it may prove an interesting
SIF retrieval method for other sensors on airborne and spaceborne platforms.
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1. Introduction

Any application based on hyperspectral imagery of the earth’s surface ac-
quired from remote platforms such as satellites, aircrafts or UAVs must con-
sider the influence of the atmosphere at acquisition time. The atmospheric
state has a confounding influence on the measured at-sensor radiance. In
order to disentangle atmospheric effects from a physical surface variable of
interest a firm understanding of the physical signal generation is necessary.
Various atmospheric radiative transfer models (RTMs) have been developed
(e.g. MODTRAN6 [1], 6S/6SV [2, 3], libRadTran [4]) to derive appropriate
correction algorithms for these effects. In vegetation-related remote sensing
it is crucial to couple such atmospheric models with leaf and soil optical
properties, leaf-level energy fluxes [5, 6, 7, 8], and radiative transfer models
in the canopy [9, 10] to enable accurate retrieval of biophysical parameters
from remote sensing reflectances.

Similarly, the retrieval of sun-induced fluorescence (SIF) from hyperspec-
tral imagery in atmospheric absorption bands relies heavily on accurate mod-
elling of atmospheric radiative transfer and of sensor properties. The state
of the atmosphere parameterized by its water vapour content, the type and
density of aerosols at recording time as well as the pressure and temperature
profiles along the optical path of the at-sensor signal modulate the radiance
signal from which SIF is retrieved [11, 12, 13, 14]. Since in typical acquisition
scenarios of hyperspectral at-sensor radiance for SIF retrieval no measure-
ments are conducted to establish the signal contribution of the atmosphere
during recording time, atmospheric variables must be estimated using RTMs
in iterative processes. However, RTMs can often not be used directly in
radiance-based estimation for individual pixels due to their computational
cost. To reduce the retrieval dependency and the number of RTM simula-
tions required to retrieve SIF from at-sensor radiance, a two-step procedure
is assumed in various SIF retrieval methods as opposed to a joint estima-
tion of surface, atmospheric and sensor related parameters. In a first step
the atmosphere is characterized for a large number of pixels to derive the
atmospheric transmittance with the help of an RTM. In a second step, these
transmittance estimates are used to disentangle reflectance, fluorescence and
possibly sensor miscalibrations commonly parametrized in center wavelength
(CW) and full width at half maximum (FWHM) shifts. For example, [15, 16]
derive a set of atmospheric transfer functions for single acquisitions using an
RTM ’interrogation’ technique first introduced by [17]. Operationally, these
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estimated transfer functions are finetuned to account for retrieval errors of
atmospheric components, sensor noise, sensor mischaracterization and model
inaccuracies by modifications of a procedure called transmittance correction
[18, 19]. This type of finetuning of the atmospheric transfer functions is based
on the presence of non-vegetated pixels that are not affected by fluorescence.
The identification of non-vegetated soil pixels can be difficult, however, in
many geographical areas and especially in observation set-ups resulting in
pixel sizes larger than a few meters where pure pixels are rare.

The validity of constant atmospheric transfer across a large set of spatial
pixels relies on the fact that in airborne imagery the auto-correlation distance
of atmospheric factors influencing the at-sensor radiance is usually larger than
the spatial extent of the prediction [20, 21]. In the case of airborne acquisi-
tions this results usually in the use of a single RTM estimate per acquisition.
In the case of spaceborne acquisitions with a much larger spatial footprint,
as will be provided for example by the FLEX mission [22], this assumption
is not satisfied and strategies to localize the atmospheric characterizations
efficiently must be developed. In the context of atmospheric correction for
accurate reflectance estimation [23] have for example recently demonstrated
the use of local linear emulators for accurate and computationally efficient
atmospheric correction.

Similarly to changing atmospheric conditions on spatial scales relevant
to satellite observations, the strongly changing observational conditions in
airborne observations of topographically variable terrain are a challenge for
SIF retrieval algorithms based on spectral regions affected by O2 absorption.
The simplifying assumption of constant atmospheric transmittance is invalid
in these cases since the resulting optical path differences cause large variance
in the depth of these absorption features.

[24] has proposed a pathway to computationally efficient SIF retrieval in
these observational conditions. A reconstruction based on a Principal Com-
ponent Analysis (PCA) of atmospheric transfer functions is used to model
the radiative transfer non-parametrically. The use of PCA reconstructions
allows for localized radiative transfer estimations and, importantly, a joint
retrieval of the transfer functions as well as surface and sensor related quanti-
ties impacting the at-sensor radiance. However, the PCA loadings are fitted
non-parametrically since they are not formulated as functions of physical
quantities (e.g., surface and sensor altitude, water vapour content, aerosol
optical density) as would be the case with physically explicit RTM simula-
tions. This (i) impedes the explanatory power of atmospheric estimates and
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(ii) does not allow for constraining the atmospheric estimates with known
physical quantities.

In this work we propose the use of RTM emulation instead of the PCA-
based radiative transfer formulation adopted in [24] to increase the physical
accuracy of the Spectral Fitting Method Neural Network (SFMNN) in Hy-
Plant FLUO data. Such an emulator-based SFMNN (EmSFMNN) approach
has recently been validated for spaceborne DESIS data [25] in conjunction
with a loss formulation similar to [24]. The authors find good agreement
between their DESIS derived SIF product and HyPlant SIF estimates in
a benchmark data set consisting of quasi-simultaneously recorded HyPlant
and DESIS acquisitions highlighting the potential of this approach for hyper-
spectral sensors with improved spectral sampling intervals such as HyPlant
FLUO and the FLORIS sensor onboard the ESA’s Earth Explorer Mission
FLEX [22].

RTM emulation can be regarded as a computationally efficient approx-
imation of the exact RTM computation by a function acting on the same
input parameter space as its RTM counterpart [26]. The functional form of
such emulators is not relevant a priori, but depends on the specifications of
the application such as the required computational speed and reconstruction
performance, the spectral range of the application and the input parameter
dimensionality. In this contribution, we derive a polynomial emulator from a
large simulation database replicating typical observational conditions and the
sensor characterization of the hyperspectral imaging sensor system HyPlant
as in [11, 27, 28]. We additionally extend this emulator to represent band-
wise spectral miscalibration which is shown to be integral for accurate SIF
retrieval in HyPlant data. The functional form of this emulator matches well
the specific requirements of neural network training. The computational effi-
ciency of its predictions and gradient computation are sufficient for training
on large hyperspectral data bases. With this novel neural network approach
to integrate a computationally efficient model of canopy level optical prop-
erties and atmospheric radiative transfer into a SIF retrieval scheme we are
able for the first time to make use of a pixelwise geometrical parameterization
for a joint estimation of SIF and reflectance in airborne SIF retrieval.

In this study, We focus on SIF retrieval of selected campaign data sets of
the hyperspectral HyPlant sensor system [29, 30]. The sensor characteristics
of HyPlant and size of HyPlant data sets are uniquely suited to develop
and improve partly data-driven SIF retrieval algorithms such as ours. Since
HyPlant data is often acquired during field campaigns featuring ground based
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Data Set Campaign FLOX ∆h [m] |D| [×103] Location

SEL-2018 (600 m) SEL ✓ 20 15 (5) Selhausen, DE

WST-2019 (1500 m) WST ✓ 20 14 (5) Braccagni, IT

CKA-2020 (600 m) CKA ✓ 20 10 (3) Kl. Altendorf, DE

CKA-2020 (350 m) CKA ✓ 20 8 (2) Kl. Altendorf, DE

CKA-2021 (350 m) CKA ✓ 20 4 (1) Kl. Altendorf, DE

TOPO
SOP, HOE

– 300 11 (3)
Jülich, DE

Hölstein, CH
600 m
2021 - 2023

PRE

PHY, HOE, TR32

– 300 235 (38)

CKA, SEL, SOP

WST, NRS

350 - 1800 m

2018 - 2023

Table 1: Data sets of compiled HyPlant acquisitions from different locations in the years
2018 - 2023. Data Set denotes a single compilation. With Campaign we denote the
campaign identifier pointing to the used acquisitions according to the identified scheme
outlined in the openly available HyData data set [30], with FLOX we denote the avail-
ability of simultaneous FLOX data, with ∆h the maximum topographic variation over the
compiled data set, with |D| the data set size in terms of number of 60×60 image crops. In
parenthesis is reported the number of patches used for training.

SIF measurements, we are able to complement the present study with a direct
comparison of SIF estimates of our approach with ground-based in-situ SIF
estimates. However, we point out that while HyPlant is well suited to test the
set-up presented in this work, EmSFMNN may be applied on data acquired
by other airborne or spaceborne sensors. Its specific formulation is in fact
well suited to cope with large existing hyperspectral data sets and continuous
data streams of hyperspectral imaging sensors.

2. Data

2.1. Data quality provided by the HyPlant FLUO sensor

The HyPlant FLUO sensor [29] is the airborne demonstrator for the space-
borne FLEX satellite mission [22]. As such, it has been designed specifically
for SIF retrieval in the atmospheric O2-A and O2-B absorption bands with
a spectral sampling interval of 0.11 nm and a full width a half maximum
(FWHM) of 0.25 nm. A large collection of hyperspectral HyPlant data sets
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Figure 1: Geometrical set-up of the
sun-observer geometry definitions in use.
RAA denotes the relative azimuth angle,
TA the tilt angle and SZA the sun zenith
angle.

Specification Range

Atmosphere H2O [cm] 0.3−3.0

AOT550 [] 0.02−0.30

Geometry TA [◦] 0−25

SZA [◦] 20−55

RAA [◦] 0−180

hgnd [km] 0−0.760

hagl [km] 0.2−2.86

Surface ρ740 [] 0.05−0.60

s [nm−1] 0−0.012

e [] 0−1

F737 [∗] 0−8

Sensor ∆λ [nm] [−0.080,+0.080]

∆σ [nm] [−0.040,+0.040]

Input dimensions 13

Number of bands 349

Number of samples 6.3× 106

Table 2: Specification of the ranges of
all physical variables necessary for complete
parametrization of the simulation tool.
∗: F737 is given in units of [mW/nm/sr/m2].

have been collected since 2014 [31, 32, 33, 34, 35, 36, 37] and are partly openly
available [30]. In particular, yearly data sets since 2018 can be considered to
be comparable across different campaigns due to their operationalized and
standardized radiometric calibration and derivation of the geometric cor-
rection. Overall, the radiometric calibration is gauged at a mean relative
uncertainty rg of 3% [36] and the geolocalization reaches subpixel accuracy
[29].

In this study, we make use of radiometrically corrected HyPlant FLUO
acquisitions acquired in the years 2018 -2023 (cf. Tab. 1) in different flight
campaigns, various locations and varying sun-observer geometries. The data
set incorporates a large part of all available HyPlant FLUO acquisitions from
this time period. We notably include acquisitions with strong topographic
variation to train and to test the retrieval performance under these demand-
ing conditions (cf. Sec. 4.4).
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2.2. Simulation of HyPlant at-sensor radiance
The emulator utilized in this work is based on the polynomial emulator

described in [27, 28] derived from a simulation tool generating single pixel
at-sensor radiance [11]. It uses MODTRAN6 to model radiative transfer
through the atmosphere and assumes simple parametric models for surface
reflectance and fluorescence emission in the spectral range around the O2-A
oxygen absorption band. The parameters of the simulator have been cho-
sen according to an extensive sensitivity study performed in [11]. We fixed
the ranges of the resulting 13 parameters such that they cover the empir-
ical distributions found in the HyPlant acquisitions used in this work (cf.
Tab. 2). Appropriate ranges for the geometric parameters sensor altitude
above ground level hagl, ground altitude hgnd, relative azimuth angle RAA
and tilt angle TA could be established exactly from metadata provided with
HyPlant data taking account of its precise orientation. The ranges for the
surface parameters and for the sensor characterization also were adopted di-
rectly from preparatory work in [27, 28]. The parameterization of a simple
quadratic reflectance model implemented in the simulation tool was chosen
according to an analysis of vegetation and soil reflectance spectra of the
DUAL hemispherical-directional reflectance product that is computed op-
erationally for all HyPlant acquisitions. Equally, we modelled fluorescence
emission in the O2-A band spectral region with a Gaussian with fixed mean
(µ = 737 nm), fixed standard deviation (σf = 20 nm) and a free ampli-
tude F737. The ranges regarding the sensor characterization parameterized
by center wavelength shifts ∆λ and FWHM shifts ∆σ were derived from in-
flight data. Due to lacking simultaneous measurements, which would have
allowed an estimate of the ranges of the atmospheric parameters aerosol op-
tical thickness AOT550 and water vapour density H2O, these ranges were
chosen such that they covered all possible atmospheric states in which Hy-
Plant campaigns are operated (cloud-free weather conditions in mid-latitude
regions in summer).

We sampled the parameter ranges in Tab. 2 with different sampling strate-
gies for training and validation data set to derive an emulator as outlined in
[27, 28]. Importantly, the input parameters p were sampled independently.
Since the parametric models for the spectral shapes of the reflectance and
fluorescence implemented in the simulation tool were completely independent
as well, we prevented our retrieval method to incorporate cross-correlations
between fitted parameters a-priori as this would undermine the purely phys-
ical approach followed in this work.
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2.3. In-situ SIF validation data

For a subset of the HyPlant acquisitions used in this work in-situ mea-
surements of SIF are available (cf. Tab. 1). All in-situ measurements were
derived with the Improved Fraunhofer Line Discrimination Method (iFLD)
[38] from radiance point measurements and solar irradiance recordings of
the hyperspectral FLOX device (Fluorescence Box, JB-Hyperspectral De-
vices GmbH, Duesseldorf, Germany). In the case of the FLOX measurement
series matching with CKA-2020 HyPlant acquisitions, the in-situ measure-
ments were taken in four different locations by four different devices. One
FLOX was placed in an agricultural oat field and three others in wheat fields.
For the validation, we have aggregated the time series and did not differen-
tiate between the different FLOX devices. The localization of those FLOX
systems was improved with an exact GPS RTK measurement at each of the
devices. In case of the in-situ measurements matching the SEL-2018 HyPlant
acquisitions, a single mobile FLOX device was used in agricultural fields of
sugar beet and wheat.

FLOX measurements falling within a 5 minutes to the acquisition time
of HyPlant were considered. We selected only FLOX measurements flagged
as having high radiometric stability (< 1% difference in solar irradiance over
the course of the measurement) in order to exclude measurements affected
by cloud and haze. Since HyPlant campaigns are only conducted in optimal
weather conditions, no measurements had to be excluded. In the case of
multiple measurements within this time window matching a single acquisi-
tion, we averaged the FLOX iFLD SIF estimate to compare with HyPlant
derived SIF estimates. In order to account for localization errors as well as
the field of view we compared HyPlant pixels within a 2 m radius around
the measurement location. The temporal and spatial variance resulting from
the time windowing and spatial localization buffer were used as proxies for
uncertainty estimates in the performance calculations.

3. Methods

3.1. Simulation Tool

The simulation tool utilized in this work [11, 27, 28] uses MODTRAN6
to simulate the HyPlant at-sensor radiance in a spectral range covering the
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O2-A absorption band (740 - 780 nm) according to the model

Ls(p) =

(
Lp +

E0
gρT

↑

π(1− ρS)
+ LFT

↑

)
(p) (1)

as a function of the parameters p (as defined in Tab. 2) where Lp is the
path radiance, E0

g is the global solar irradiance on the ground, T ↑ is the total
transmission coefficient from surface to sensor (direct and diffuse components,
T ↑ = T ↑

dir + T ↑
dif), LF is the top-of-canopy fluorescence emission modelled as

a Gaussian with fixed variance and amplitude F737, S is the spherical albedo
of the atmosphere, ρ is the hemispherical-directional reflectance modelled as
a 2nd order polynomial with offset ρ740, slope s and curvature e, H2O denotes
the columnar water vapour content, AOT550 the aerosol optical thickness,
TA the viewing angle, SZA the solar zenith angle, RAA the relative azimuth
angle between observation and irradiance directions, hgnd the topographic
height above sea level, hagl the sensor height above ground level and ∆λ and
∆σ the scalar shifts in the center wavelength and full width at half maximum
(FWHM). In order to be consistent with in-situ reference fluorescence esti-
mates, we report SIF760 instead of F737 in all validation and analysis sections
which we define as the functional value of the modelled fluorescence emis-
sion at 760 nm. The simulations have been conducted with an atmospheric
model corresponding to the MODTRAN mid-latitude summer model. Thus,
we have disregarded changes in the atmospheric pressure profile that might
be caused by changing meteorology or topography. Finally, as in [28, 27],
we densely sample the parameter space spanned by the parameter ranges in
Tab. 2 and run a total of 6.3× 106 simulations.

3.2. Definition of the polynomial emulator

Emulation of a hyperspectral simulator Ls(p) : RM → RΛ from physical
parameters p ∈ RM by an emulator e is ultimately a regression problem
where we derive a function e : RM → RΛ that reproduces as closely as possible
the simulator Ls at reduced computational cost. In practice, there is a trade-
off between reducing the residual between simulator and emulator on the
one hand and reducing the computational cost of e on the other for any non-
trivial simulator Ls. Since the emulator is used during the training of a neural
network, we require additionally that its gradient computation is efficient and
preferably can be integrated easily in common programming frameworks for
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deep learning. The polynomial emulator investigated by [27, 28] fulfills these
requirements. It is defined as the polynomial function of dth order

ed(p | aKd) =
∑
k∈Kd

pk01 . . . pkMM ak, (2)

over the parameters p, where ak ∈ RΛ and where the set of polynomial
features is defined as

Kd =

{
k ∈ NM :

∑
1≤i≤M

ki ≤ d

}
(3)

We train the emulator weights ak in a least-squares optimization with a
training subset of the data points partitioned from the total simulation data
set as in [27, 28].

3.3. Emulation of a wavelength dependent sensor characterization

The simulation data base is created for scalar shifts ∆λ and ∆σ, i.e. sim-
ulated spectra s(p) ∈ RΛ will suffer the same simulated sensor miscalibration
in all wavelengths λ ∈ Λ. In a realistic sensor model, CW and FWHM shifts
are, however, functions of the wavelength such that we ought to find an em-
ulator with dependency on shifts ∆λ ∈ RΛ and ∆σ ∈ RΛ in addition to the
other input parameters p̃. We assume that there is no cross dependency of
the shifts either in the measured at-sensor radiance L or the simulator Ls,
i.e.

∀i ̸= k :
dLi

dvk
=

d (Ls)i (p̃,∆λ,∆σ)

dvk
= 0, v ∈ {∆λ, ∆σ}. (4)

In this case a naive approach to extend the emulator could be achieved by
rewriting

eΛd (p̃,∆λ,∆σ) = (ed(λi | p̃,∆σi,∆λi))0≤i≤Λ (5)

As the simulation data base covers a large number of spectral bands (Λ =
349) such an approach results in a significant increase in computation time
for a single spectrum since the emulator would need to be run Λ times for a
single emulated spectrum. We therefore adopt an approximation. We derive
a multiplicative correction factor

m(λi |∆λ,∆σ) = E [w (λi | p̃, ∆λi,∆σi)] (6)

= E
[

ed (λi | p̃, ∆λi,∆σi)

ed (λi | p̃, ∆λi = ∆σi = 0)

]
(7)
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Module Parameters

Encoder ein

Dim. (2e3, 2e3, 1e3, 5e2, 5e2, 1e2, 1e2, 1e2, 50)
Reps. (3, 3, 3, 3, 3, 3, 3, 1, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Decoder dv

Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Sensor charact. g
Dim. (1e2, 50, 50, 50, 10)
Reps. (3, 2, 2, 1)

Dp (0.05, 0.05, 0.01, 0.01, 0.005, 0.0)

Table 3: Dimensionalities for different modules in the EmSFMNN architecture (cf. Fig. 2).
Elements in a tuple denote an architecture parameter for a single sublayer in a module.
Reps. denotes the number of repetitions of linear layers in a sublayer, Dp denotes the
dropout rate of the output of the sublayer. For a more detailed exposition of the module
architecture we refer to [24].

where the expectation is calculated by sampling randomly over the param-
eter distribution in the input parameter space. As we will show below, the
variance over this distribution is very small, such that we can write

ẽd (λi | p̃,∆λ,∆σ) ≈ m(λi |∆λ,∆σ) · ed (λi | p̃, ∆λi = ∆σi = 0) (8)

3.4. Neural Network Architecture

We integrate a fourth-order emulator ẽ4 of the radiative transfer in Eq. 1
with a self-supervised neural network. We construct a neural network acting
on fixed size excerpts of HyPlant imagery (60 × 60) that we will refer to as
patches. The network architecture is defined as in SFMNN [24] and similarly
to a DESIS EmSFMNN implementation [25] (cf. Fig. 2) as a Multilayer
Perceptron (MLP) encoder-decoder set-up. The network is trained to predict
all parameters p of the RTM model in Eq. 1 that cannot be inferred from
metadata or geometrical recordings, i.e. all parameters in Tab. 2 except
parameters of the group Geometry.

The encoder ein and decoder modules dv in this network are constructed
as MLPs with residual links and have the dimensionalities given in Tab. 3.
The decoders are tasked with disentangling the latent space spanned by the
encoder to the physical parameters p̃ parameterizing the radiative transfer
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model underlying the simulation tool and, thus, the emulator. We define two
decoders dv: for the reflectance and fluorescence related parameters predicted
for each pixel and for the atmospheric parameters predicted for each patch.
These two decoder modules are implemented identically with the exception
of a final spatial mean reduction before the emulator layer in the case of the
patchwise predictor. As in SFMNN, we differentiate between pixel-wise and
patch-wise prediction based on the fact that atmospheric parameters (AOT
and H2O) have an autocorrelation that typically exceeds the physical patch
size such that a single atmospheric estimate per patch can be assumed to
lead to sufficiently precise approximations.

The estimation of sensor shifts ∆λ and ∆σ is implemented differently.
We assume that we can fit these shifts as a function of the sensor state at ac-
quisition time and the across-track sensor position alone without any spectral
input. This assumption is implemented in the architecture by estimating the
sensor shifts only from an arbitrarily defined acquisition identifier u ∈ RU

that represents the sensor state and the across-track position x1. At the start
of the training we randomly instantiate these identifiers u of fixed dimension-
ality (U = 8) for each acquisition in the training data set and include them
as learnable parameters in the optimization. The MLP module g predicts
shifts ∆λ and ∆σ for each wavelength (Λ = 349) at across-track positions
x1 from pixelwise concatenations of the identifier vectors u and a positional
encoding of x1 [39].

An important characteristic of this particular set-up consists in the phys-
ically coherent separation of inputs and the differentiation of output dimen-
sions for individual parameters. For example, all reflectance parameters (ρ740,
s, e) and the fluorescence emission amplitude F737 are estimated for each pixel
from the radiance data and geometrical information νgeo, but without pro-
viding the acquisition identifier u since the decoders to those parameters by
definition do not depend on sensor characteristics or acquisition dependent
changes. Similarly, atmospheric parameters are estimated from radiance and
νgeo alone, but, differently to the surface parameters, only per patch as we
assume negligible variance of these parameters over small spatial distances.
The sensor characterization ∆λ and ∆σ on the other hand is uniquely esti-
mated from the acquisition identifier u for individual across-track positions
x1 since it is driven by factors that are identical across single acquisitions.
Both input separation and differentiation in output dimensionality constrain
the network optimization architecturally with prior knowledge of the physical
processes and sensor design at play. On the other hand, we implicitly con-
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Figure 2: Outline of the architecture and emulator integration of the SFMNN used in this
work. Dimensions of the encoder ein, the decoders for variables ρ740, s, e, F737, AOT550

and H2O and the sensor characterization g are given in Tab. 3.

strain the network by enforcing physically accurate solutions of the radiative
transfer equation Eq. 1 given a particular parametrization p̃. Differently to
the simplified four-stream model used in SFMNN to model at-sensor radi-
ances, the emulator ẽ allows for pixel-wise parameterization of the radiative
transfer formulation with known geometrical variables. This is a significant
improvement over SFMNN’s formulation as the solution space of the network
can be constrained very precisely in a pixel-wise fashion.

3.5. Loss formulation

The loss used in this set-up is adapted from the loss used in [24]. It
consists of a batchwise mean squared reconstruction error complemented by
two regularizers. Given the input radiance spectra LHyP as measured by
HyPlant and matching geometrical meta data νgeo (flight hsen and ground
altitude hgnd, relative azimuth RAA, tilt angle TA and solar zenith angle
SZA) we train the network n to minimize

ℓ
(
LHyP, L̂HyP

)
=

〈(
LHyP − L̂HyP

)2〉
λ, x

+ γf ℓf + γN ℓNDVI, (9)

where LHyP is the measured at-sensor radiance in the spectral window W
and

L̂HyP = ẽ(p̃,∆λ,∆σ, νgeo) (10)
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denotes the network prediction with predicted p̃, ∆λ and ∆σ. ⟨. . . ⟩x,λ de-
notes the spatial and spectral mean over the patches included in a batch.
Throughout all experiments in this work we have fixed the regularizer weights
γf = 1 and γNDVI = 10. These weights were established as they have shown
satisfactory results in preliminary tests on the CKA-2020 (600 m) data set
(cf. Tab. 1).

The fluorescence regularization

ℓf =

〈∑
λ∈W

wλ

(
LHyP(λ)− L̂HyP(λ)

)2〉
x

∣∣∣∣∣
δpi=0, pi ̸=F737

(11)

boosts the contribution of reconstruction residuals according to a SNR-based
weighting wλ that accounts for the spectral distribution of typical fluores-
cence emission. This weighting is derived as the Moore-Penrose solution to
a linearized retrieval problem with known reflectance and atmospheric pa-
rameters [24]. We thus restrict the gradient contribution of this loss term to
affect only the fluorescence decoder (i.e. network weights uniquely related to
parameters pi ̸= F737, i.e. reflectance, atmospheric and sensor parameters,
are not affected by this term). The physiologically motivated regularizer

ℓNDVI =
〈
f̂ · δ (NDVI < τ)

〉
x

(12)

ensures that the fluorescence estimate f vanishes in pixels with very low
green vegetation, i.e. in pixels with a low Normalized Difference Vegetation
Index (NDVI). To identify these pixels, we set a threshold τ = 0.15 on an
approximate NDVI product derived from the radiance LHyP.

3.6. Training set-up

The training of the EmSFMNN SIF predictors takes place in two steps.
We first train a backbone on the PRE HyPlant data set (cf. Tab. 1). This
backbone is used as the initialization to all EmSFMNN instances that are
trained for individual data sets in the second step. Finetuning of PRE aims
at adjusting the network (1) to the data set specific radiance calibration, (2)
to train the acquisition specific identifiers u that determine the estimated
shifts ∆λ and ∆σ and (3) to train in the specific parameter ranges covered
differently in the various data sets (e.g. TOPO exhibiting larger variation
of hagl). During the finetuning step, the encoder ein is fixed and only the
decoders dv, the identifiers u and the sensor characterization g are trained.
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As the identifiers u are not estimated from the radiance data but rather im-
plicitly as a result of the architectural constraint in each acquisition, there
is no generalization property of this part of the network. Thus, in order
to get meaningful shift predictions, a finetuning is thus necessary. When
EmSFMNN instances are applied to data sets for which they were not fine-
tuned, arbitrary identifiers u are selected from the set of finetuned u. This
procedure results in larger reconstruction errors than would have been pos-
sible with a finetuning of u but it doesn’t necessarily affect the fluorescence
estimate negatively. The spectral reconstruction window W was fixed to
cover 750 - 770 nm.

Figure 3: Multiplicative change w of e4 under variable sensor shifts (∆λ and ∆σ) in three
selected wavelengths. In blue is plotted the standard deviation of w (as defined in Eq. 6)
over the distribution of randomly sampled emulator parameter configurations p. The
fitted mean used as multiplicative correction m (see Eq. 6) is plotted in orange.

4. Results

4.1. Training of emulator extension for bandwise spectral shifts

We have derived a polynomial emulator of 4th order of HyPlant at-sensor
radiance e4 for the parameter ranges given in Tab. 2. In order to allow for
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Figure 4: Relative errors of the approximate emulator ẽ4 (green/yellow) and scalar shift
emulator e4 (pink) with respect to the accurate eΛ4 emulator. In the case of e4 we set
∆λ = ∆σ = 0. The 25 -75 % percentile range is plotted in dark green, the 5 - 95 %
percentile range in light green, the mean in yellow. Pink denotes the 25 -75 % percentile
range.

efficient training we then have implemented the emulator extension for wave-
length dependent shifts ẽ4 based on the polynomial emulator e4 which acts
only on scalar shifts as outlined in Sec. 3.2. To this end, we have computed
the multiplicative factor m as the expectation in Eq. 6. To compute the dis-
tribution, we uniformly sampled a large number of parameter combinations
p and sensor shifts ∆λ and ∆σ in the input space spanned by the individual
parameter ranges.

We found the standard deviations of w to be bounded by 3.5% under CW
shifts and 0.06% by FHWM shifts which we regarded as sufficiently small to
approximate it by its mean m (cf. Fig. 3). Subsequently, we fitted a 5th

order polynomial to the derived m to gain a multiplicative factor defined on
the whole input parameter space discarding the need for interpolation during
prediction. The dimension of this polynomial was required to be just large
enough to fit m well. The use of ẽ4 leads to a significant time reduction as
compared to eΛ4 (cf. Tab. 4).

In order to evaluate the accuracy of ẽ4 we compared it to eΛ4 on a uniformly
sampled test set. While eΛ4 takes significantly longer to compute, its accuracy
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with respect to the RTM is as high as the emulator itself since it essentially
computes the emulator in a bandwise fashion. In Fig. 4 we show that the
mean relative error incurred by using the approximation ẽ4 is smaller than
1% . However, the 95% percentile reaches a relative error of 3.5% inside
the O2-A band. We equally show the effect of neglecting bandwise shifts by
comparing emulations of eΛ4 with e4 emulations with scalar shifts. The same
parameters p̃ were used for eΛ4 and e4 with only ∆λ and ∆σ set to a fixed
scalar value for e4. The relative errors can reach up to 10-20 % in the O2-A
band highlighting the importance of bandwise sensor characterization.

4.2. Reconstruction Performance

We evaluate the impact of the various implemented constraints, the op-
timization and the emulator extension on the reconstruction performance.
To this end we compare the reconstruction performance of four different
EmSFMNN set-ups to the reconstruction performance of an unconstrained
least-squares optimization (LSQ) of the emulator e4 to individual pixels
in a single HyPlant acquisition (cf. Fig. 5). By mCKA(ẽ4) we denote an
EmSFMNN predictor using the spectrally explicit sensor miscalibration em-
ulator ẽ4 and finetuned on the CKA-2020 (600 m) data set. The EmSFMNN
mSEL(ẽ4) and mSEL(e4) are equivalently trained on the SEL-2018 (600 m)
data set and mPRE(ẽ4) denotes the common backbone without finetuning.
Importantly, the HyPlant acquisition for which we evaluate the reconstruc-
tion performance is part of the finetuning training set of mSEL(ẽ4) but not of
mCKA(ẽ4). Due to the prediction of ∆λ and ∆σ in EmSFMNN being depen-
dent on learnable IDs, and the ID not having been trained for mCKA(ẽ4), we
use a single ID in CKA that we arbitrarily choose from the set of IDs trained
for CKA acquisitions.

e4 eΛ4 ẽ4

Prediction time per sample 0.28 µs 55.40 µs 1.93 µs

Table 4: Prediction time measurements for the original emulator e4, the original emulator
applied in a bandwise fashion eΛ4 and the emulator approximation ẽ4. In the case of e4
only scalar sensor shifts were computed. The values represent the average of 20 time
measurements on a single GPU (NVIDIA Quadro RTX 8000) predicting a batch of 104

samples.
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Figure 5: Distribution of relative reconstruction errors ε (see Eq. 13) for different
EmSFMNN set-ups as well as a least-squares optimization in a HyPlant acquisition
recorded on 2018/07/26 15:30 CEST in Selhausen. The mean values of these distribu-
tions are reported directly in the figure with vertical lines. Mean relative reconstruction
errors for mSEL(e4) and mSEL(ẽ4) overlap in this figure. rg denotes the relative uncertainty
of the radiometric calibration.

In Fig. 5 we report the distribution of the relative reconstruction residuals

ε =

〈∣∣∣∣∣LHyP − L̂HyP

LHyP

∣∣∣∣∣
〉

x,λ

. (13)

of LSQ and all EmSFMNN predictors in the acquisition. We find that the
unconstrained emulator optimization LSQ outperforms all EmSFMNN train-
ing set-ups. However, since LSQ is completely unconstrained, the resulting
estimates of physical parameters defining the simulation layer are not well
disentangled. As a consequence, it cannot be used for SIF retrieval, even
though it provides a useful baseline for the reconstruction error.

Since the simulation layer of mSEL(e4) and LSQ are the same, a compar-
ison of mSEL(e4) to the least-squares optimization LSQ isolates the impact
of EmSFMNN’s constraint formulation and its feature-based optimization.
The direct EmSFMNN equivalentmSEL(e4) performs significantly worse than
LSQ, presumably due to the constrained optimization. However, this de-
crease in reconstruction performance can be improved by adopting the ex-
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r R2 MAE
N

[mW nm−1 sr−1 m−2]
S
E
L
-2
0
1
8

(6
0
0
m
)

EmSFMNN (ẽ4) 0.91 0.55 0.26 ± 0.09 10

EmSFMNN (e4) 0.86 0.74 0.46 ± 0.05 10

PRE 0.78 0.57 0.47 ± 0.06 10

SFMNN 0.98 – 0.68 ± 0.07 10

SFM 0.96 – 0.51 ± 0.07 10

iFLD 0.64 0.10 0.88 ± 0.00 11

W
S
T
-2
0
1
9

(1
5
0
0
m
)

EmSFMNN (ẽ4) -0.54 – 0.29 ± 0.05 15

EmSFMNN (e4) -0.73 – 1.48 ± 0.05 15

PRE -0.78 – 0.41 ± 0.04 15

SFMNN – – 0.22 ± 0.10 15

SFM – – 0.53 ± 0.08 15

iFLD – – 0.80 ± 0.10 15

C
K
A
-2
0
2
0

(6
0
0
m
)

EmSFMNN (ẽ4) 0.65 0.02 0.35 ± 0.05 16

EmSFMNN (e4) 0.69 0.18 0.47 ± 0.05 16

PRE 0.67 – 0.39 ± 0.06 16

SFMNN 0.69 0.34 0.33 ± 0.06 16

SFM 0.72 – 0.48 ± 0.06 16

iFLD 0.64 – 0.42 ± 0.09 16

C
K
A
-2
0
2
0

(3
5
0
m
)

EmSFMNN (ẽ4) 0.74 0.04 0.28 ± 0.04 34

EmSFMNN (e4) 0.81 0.12 0.35 ± 0.04 34

PRE 0.80 – 0.33 ± 0.04 34

SFMNN 0.84 – 0.34 ± 0.04 34

SFM 0.87 – 0.35 ± 0.04 34

iFLD 0.58 0.05 0.28 ± 0.05 34

C
K
A
-2
0
2
1

(3
5
0
m
)

EmSFMNN (ẽ4) – 0.19 0.38 ± 0.09 6

EmSFMNN (e4) – 0.16 1.07 ± 0.12 6

PRE – 0.30 0.70 ± 0.09 6

SFMNN – – 0.65 ± 0.10 6

SFM – – 0.50 ± 0.08 6

iFLD 0.85 0.71 0.12 ± 0.18 6

Table 5: Comparative validation of SFM, iFLD, SFMNN and EmSFMNN retrieval meth-
ods. We report the mean absolute error (MAE) of the EmSFMNN predictions with respect
to FLOX measurements, the Pearson correlation r and the Explained Variance Score R2.
In cases where the p-value of r is larger than 5% we do not report r and write − instead.
Similarly, in cases where R2 ≤ 0 we do not report R2 and write −.
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tended emulator formulation with bandwise shift prediction which results in
a smaller lower limit of the reconstruction residuals but which also increases
the tail towards larger residuals.

We measure the generalization capacity of EmSFMNN across different
data sets with respect to the reconstruction performance. The residual dis-
tribution of mCKA(e4) yields an ε which is significantly increased over its
equivalent mSEL(e4) as it lacks finetuning to the HyPlant input data acqui-
sition. However, its performance is close to what can be expected from the
relative uncertainty of the radiometric calibration of the at-sensor radiance
rg. Since mCKA(e4) that has been finetuned on the CKA-2020 data set is
applied here on an acquisition from the SEL-2018 data set, effects due to
different yearly calibrations can affect the reconstruction performance.

Finally, it can be observed that the relative reconstruction error ofmPRE(e4)
is constrained in the range 3 - 6 %. It is thus larger than errors attributed
purely to calibration uncertainties and indicates that the backbone PRE is
not able to reconstruct model at-sensor radiance of arbitrary HyPlant acqui-
sitions from its learned feature representation without prior finetuning.

4.3. Validation with FLOX data

We validate EmSFMNN SIF predictions with top-of-canopy iFLD SIF
estimates derived from radiance data recorded by FLOX devices. To this end,
we use the fluorescence model assumption of the Gaussian implemented in
the simulations to calculate SIF760 consistent with the FLOX iFLD retrieval
software. Five measurement time series are at our disposal acquired during
HyPlant overflights in field campaigns in the years 2018 - 2021 (see Fig. 6).
To support our comparison, we also report the validation results for three
baseline methods that were developed for hyperspectral HyPlant imagery
(iFLD, SFM and SFMNN). Additionally, we show the impact of the emulator
formulation and the finetuning on the performance of the standard training
set-up denoted by EmSFMNN (ẽ4) in Tab. 5. To this end, we report (i)
results for the EmSFMNN set-up using the polynomial interpolation without
band-wise sensor characterization, denoted as EmSFMNN (e4), and (ii) the
performance of the coarsely pre-trained SIF predictor, denoted as PRE.

We find that the EmSFMNN (ẽ4) predictors finetuned to the individ-
ual datasets generally are among the best SIF retrieval methods in terms
of the mean absolute error with respect to FLOX estimates (MAE). They
yield MAE scores consistently smaller than 0.4 mW nm−1 sr−1 m−2 whereas
stronger variation in MAE can be found in case of the iFLD, SFM and
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SFMNN SIF predictions. We find notably a reduced overestimating bias of
EmSFMNN as compared to SFMNN in Fig. 6 and a higher accuracy than
in SFM and iFLD predictions.

Both the use of ẽ4 instead of e4 as well as the finetuning considerably
decrease the MAE. This can be concluded from the improved performance
of EmSFMNN (ẽ4) over EmSFMNN (e4) and PRE. These two aspects have
been introduced to improve
the model representation by (i) a more exact simulation layer in the recon-
struction loss and (ii) a more precise fitting of the spectral data by special-
izing the network weights to a selection of HyPlant lines. While the use
of the non-specialized pretrained EmSFMNN model PRE leads to valida-
tion results comparable to the baseline methods, it is necessary to make use
of a finetuning step to improve over the baseline methods iFLD, SFM and
SFMNN.

In Tab. 5 we equally report the Pearson correlation scores r and the
Explained Variance Score R2. A consistent cross-validation assessment based
on r and R2 is, however, not possible throughout all validation data sets due
to strongly variable performance under these two metrics. Due to the small
number of validation data points these performance metrics are subject to
large uncertainties. A reduced performance of EmSFMNN (ẽ4) in terms of r
with respect to SFMNN is, however, observable in all data sets where such
a comparison can be made. We hypothesize that this may be due to the
more strict modelling approach of EmSFMNN which may result in a higher
sensitivity to sensor noise.

4.4. Topography

The emulator was derived from simulations covering a hgnd range of 0 -
0.76 km and of hagl 0.2 - 2.86 km. This allows the application of EmSFMNN
predictors in acquisitions with large height variation where both the sur-
face height hgnd and flight height above ground level hagl change significantly
over the course of a single datatake. To test the reconstruction performance
of EmSFMNN predictors under these circumstances we examine the TOPO
data set consisting of HyPlant acquisitions with strong topographic varia-
tion and a nominal flight height of 600 m (see Tab. 1). We apply (i) the
EmSFMNN predictor finetuned to the CKA-2020 (600 m) data set (denoted
as mCKA) and (ii) a EmSFMNN finetuned to the TOPO data set (mTOPO).
The finetuning of the mTOPO and mCKA was performed on the TOPO data
set as described above (cf. Tab. 1) and only differed in the finetuning data
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Figure 6: FLOX derived iFLD SIF vs. HyPlant derived EmSFMNN, SFMNN, SFM and
iFLD SIF in the five in-situ validation data sets (see Tab. 1). The dashed line and the
red floating labels report the linear relationship between EmSFMNN and FLOX iFLD
estimates. In the CKA-2020 data sets FLOX measurements from different devices are
reported separately.

set. Both predictors derive from a EmSFMNN backbone trained on the
PRE data set which includes the data contained in TOPO. By examining
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Figure 7: Top row: Marginalized distribution of relative reconstruction residuals of
CKA(1) in red and TOPO(1) in blue in the whole fitted spectral window W (a) and
in the spectral window WO2A in the O2-A band (b). Bottom left: Relative reconstruc-
tion residuals of CKA(1) (red) and TOPO(1) (blue) stratified by the sensor height above
ground hagl in W (a) and WO2A (b). Red and blue lines denote the means, dark areas
denote the 25 - 75 percentile ranges, light areas denote the 10 - 90 percentile ranges. In
yellow we highlight the range of hagl covered by the CKA-2020 data set on which CKA(1)
was finetuned. Bottom right: Logarithmic empirical histogram of hagl of CKA-2020 in
yellow and TOPO in blue.

on TOPO with both mCKA and mTOPO we can evaluate the importance of
topography related distribution differences between finetuning data sets.

In Fig. 7 (a) and (b) we summarize the residual statistics of mCKA and
mTOPO as a function of the flight height hagl in the full prediction spectral
window W (750 - 770 nm) as well as in a narrow spectral window WO2A in
the O2-A absorption band (759.5 - 761 nm). mCKA outperforms the finetuned
mTOPO in W exhibiting a residual distribution with less outliers. Notably,
mCKA outperforms mTOPO including in hagl ranges that are not covered by
the CKA-2020 (600 m) finetuning data set. The finetuning to the valida-
tion data set TOPO yields, however, to an improved mTOPO performance
in the O2-A band with mTOPO exhibiting an improved reconstruction per-
formance overall. The strong reconstruction residual outliers of mTOPO are
consequently contained in spectral regions outside the O2-A band as can be
understood from the fact that its performance on WO2A is less affected by it.

While we are able to assess the reconstruction performance of mTOPO

and mCKA, we can not evaluate the SIF predictions in the TOPO data set
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Figure 8: Top row: Marginalized distribution of reflectance offset parameter ρ (a) and
fluorescence emission amplitude F737 as predicted by CKA(1) in red and TOPO(1) in
blue. Bottom left: reflectance offset parameter ρ (a) and fluorescence emission amplitude
F737 (b) stratified by the sensor height above ground hagl as predicted by CKA(1) in
red and by TOPO(1) in blue. Red and blue lines denote the means, dark areas denote
the 25 - 75 percentile ranges, light areas denote the 10 - 90 percentile ranges. In yellow
we highlight the range of hagl covered by the CKA-2020 data set on which CKA(1) was
finetuned. Bottom right: Logarithmic empirical histogram of hagl of CKA-2020 in yellow
and TOPO in blue.

due to lacking in-situ data. Therefore, we test whether in addition to the
reconstruction performance the SIF prediction and reflectance estimation are
independent of the hagl variation. Fig. 8 (a) shows that the SIF predictions
of mTOPO and mCKA have a constant mean over most of the covered height
range. This is to be expected in the case of a homogeneous distribution of
fluorescence emitting surfaces. The decoupling of hagl from the SIF prediction
is only invalid in the range hagl < 0.5 km where both mTOPO and mCKA have
a larger mean SIF prediction than in the rest of the height range. There are
however significantly less HyPlant pixels falling in this range such that the
homogeneity assumption is weakened due to a decreased statistical relevance.

In Fig. 9 we show an exemplary HyPlant acquisition that highlights the
independence of the achieved SIF prediction and the reconstruction perfor-
mance from hagl. Both SIF and the fractional residual ∆L/LHyP are unaf-
fected by the topographic variation over the hill slope in the image center.
The SIF predictions differ only slightly inmTOPO andmCKA due to differences
in the finetuning training data set.
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Figure 9: Top row: Shown are the SIF prediction of TOPO(1) and CKA(1) along the
ground surface altitude hgnd derived from a matching Digital Elevation Map (DEM). Lower
rows: shown are a false color image of the HyPlant at-sensor radiance, the pixelwise SIF
prediction of TOPO and the relative reconstruction error of TOPO in the spectral window
W in a subset of the HyPlant acquisition displayed in the top row.

Concluding, we can observe that the influence hagl on EmSFMNN’s re-
construction performance, SIF and reflectance prediction is small. The vari-
ation of reconstruction errors, SIF and reflectance of both mTOPO and mCKA

do not vary systematically with hagl. It could be observed that the choice
of the training data set for finetuning had a larger effect on EmSFMNN’s
reconstruction performance than the topographic variation indicating that
EmSFMNN can compensate for the variability in the atmospheric transfer
with the specific choice of RTM emulation adopted in this contribution.

5. Discussion

5.1. Simulation and Emulator Design and Limitations

In this work the integrated use of a polynomial emulator and self-supervised
neural network training could be shown to yield both fast and accurate esti-
mation of SIF at 760 nm. Two design choices of the simulation model are of
particular relevance to the discussion of EmSFMNN’s performance.

Firstly, the model underlying the simulation tool and the emulator was
set up to not feature any cross-correlation between input parameters. Mak-
ing use of a physiologically plausible model such as SCOPE [7] relation-
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ships would have confounded EmSFMNN’s capacity to fit the at-sensor ra-
diance signal purely on the basis of physical principles with possible cross-
correlations between estimated parameters. As an example, it is well known
that both the reflectance in the spectral region of photosynthetically ac-
tive radiation (PAR) and the total fluorescence emission amplitude F737 are
strongly correlated in green vegetation due to a common dependency on leaf
chlorophyll concentration [40]. Reconstructed SIF products involving space-
borne reflectance products such as the MODIS-based RSIF [41] and RTSIF
[42], reconstructing the TROPOMI SIF product, make use of this relation-
ship. Detailed studies with field data could also establish cross-correlations
in reflectance-based features and top-of-canopy SIF derived from airborne
platforms resulting from structural effects [43, 44] and biochemical processes
related to non-photochemical quenching [45]. However, such dependencies,
if incorporated a-priori in the predictor modelling assumptions, may well in-
duce larger gradients in the self-supervised loss than the small at-sensor flu-
orescence signal. As a consequence, the influence of such correlations on the
feature-based optimization and ultimately on the SIF estimate may trump
the physical and causal relationship leveraged in EmSFMNN.

Secondly, this contribution has focused on SIF retrieval in a narrow spec-
tral range. The spectral range around the O2-A absorption band of the sim-
ulation data base has allowed us to (1) parametrize the reflectance and fluo-
rescence with simple functions (second-order polynomial, Gaussian) and (2)
use a polynomial model to approximate the simulation data base. The poly-
nomial form chosen for the emulator was advantageous to the EmSFMNN
set-up as it allowed an easy integration of the emulator in the neural net-
work architecture: both forward pass and backward gradient computation
were achieved by implementing the emulator as a fixed linear layer.

The use of the plain polynomial emulator e4 [28, 27] for EmSFMNN
has led to subpar performance with respect to in-situ FLOX measurements.
While the lacking spectrally explicit sensor characterization did not lead nec-
essarily to decreased performance in terms of spectral reconstruction resid-
uals, the emulator model’s incompleteness has caused systematic errors in
the signal decomposition. As a consequence, we have implemented an emu-
lator capable of simulating HyPlant at-sensor radiances with bandwise spec-
tral shifts with an efficient approximation ẽ4. This approximation could be
shown to yield acceptable relative errors peaking at ∼ 3.5% with respect to
the exact, but computationally demanding emulator solution eΛ4 . The error
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incurred by the approximation in the O2-A absorption band may, however,
still be significant in terms of reconstruction accuracy considering that the
mean fluorescence emission at 760 nm in HyPlant acquisition amounts also
to < 3% of the mean at-sensor signal. The validation of the SIF predic-
tion of EmSFMNN models integrating this approximate emulator ẽ4 proved
sufficient to outperform all baseline methods in terms of accuracy.

While we have shown the application of EmSFMNN to HyPlant FLUO
data in this contribution, the EmSFMNN approach to retrieve SIF can be im-
plemented for data from different imaging sensors (e.g., [25]) and spectral re-
gions. Since the network architecture interacts with the data in the loss only
through the interface of the emulator representing the physical constraints of
the retrieval problem, such a change in the data modality would simply ne-
cessitate adapting the emulator. In particular, the modelling of the sensor in
the simulation tool [11] and an extension of the reflectance and fluorescence
parametric functions to the new spectral range would be required. Further
research in emulator representations of simulated hyperspectral at-sensor ra-
diance including bandwise sensor characterization is thus warranted. While
the simple polynomial approach adopted here was suitable for the spectral
range and simulation model that had been fixed for the EmSFMNN O2-A
SIF retrieval problem on HyPlant data, the integration of different emulator
architectures [46, 47, 48] may become necessary for retrieval in different data
modalities.

5.2. Prediction of Atmospheric Variables

We have tested the quality of EmSFMNN’s signal decomposition with
respect to its reconstruction performance and the agreement of its SIF pre-
diction with in-situ measurements. We could not validate the accuracy of
the predicted atmospheric variables (water vapour content H2O and aerosol
optical thickness AOT550) with direct measurements. The prediction of these
variables is understood to be very challenging in the setting adopted in the
presented retrieval method since (i) the sensitivity of the at-sensor radiance
to water vapour and AOT550 in the fitting spectral window (750 - 770 nm)
is small [11], (ii) the variation of both parameters in the training data is ex-
pected to be small due to similar meteorological conditions during HyPlant
campaigns. Furthermore, there may be remaining representation insufficien-
cies of the emulator e4 that can result in EmSFMNN predictors leveraging the
degrees of freedom in these parameters to adjust the atmospheric estimate
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Figure 10: Comparison of AOT550 estimates. Black : distribution of EmSFMNN AOT550

estimates in single HyPlant acquisitions, box width show 25-75 % percentiles and whiskers
show 5 -95% percentiles, the median is reported in orange, Blue: CIMEL measurements
of the JOYCE AERONET station [49] located at ∼ 5 km from the SEL-2018 HyPlant
acquisitions (left), box width shows the standard deviation of all measurements recorded
within 20 minutes of the HyPlant acquisition time, Green: Deep Blue AOT550 products
of MODIS Terra [50] and Aqua [51] at 10 km resolution, box width shows the standard
deviation of available Terra and Aqua products within two hours of the HyPlant acquisition
time and the whiskers represent the mean of the provided uncertainty of the estimates
within a 30 km window around the location of the CKA-2020 estimates. Red : maximum
AOT550 covered in simulation data base.

to the observational data. In particular, we highlight that the at-sensor ra-
diance simulations all have used a standardized atmospheric pressure profile
(MODTRAN mid-latitude summer) while we have not adapted the emula-
tor to the meteorological conditions at acquisition time. Thus, while H2O
and AOT550 were included explicitly in the simulations and EmSFMNN ad-
dresses these parameters with a spatial constraint, accurate retrieval of these
parameters can not be expected.

We show in Fig. 10, however, that the distributions of AOT550 estimates
of single HyPlant acquisitions is approximately consistent with AOT550 mea-
surements of a CIMEL instrument located in the JOYCE AERONET sta-
tion [49] nearby the geographical center of HyPlant acquisitions in the SEL-
2018 data set (∼ 5 km). We could gather for this analysis CIMEL AOT550

measurements with a maximum time difference to the HyPlant acquisition
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time of 20 minutes. In particular, we find a strong decrease in AOT550 on
2018/06/27 which is reflected in EmSFMNN estimates as well. Furthermore,
MODIS Terra and Aqua AOT550 estimates from data with a maximum two
hour time difference to the HyPlant acquisition are similar to EmSFMNN.
The MODIS estimates exhibit large uncertainties, however, such that they
must be considered to gauge only very roughly the accuracy of EmSFMNN
AOT550.

A more detailed study of parameters pertaining to the atmospheric com-
position at acquisition time would be of relevance for EmSFMNN if it were
to be applied to more susceptible spectral regions covered by full-spectrum
retrieval. Furthermore, more extensive analysis could establish the perfor-
mance benefit of including atmospheric estimates from different sensors as in
[25]. Since such a procedure is planned with the FLEX/Sentinel-3 tandem
orbit configuration [22], such analysis is relevant especially for further work
on the application of EmSFMNN on FLEX data.

5.3. Feature Generalization of EmSFMNN

The validation analyses have shown good performance of EmSFMNN
models on data for which the models were not finetuned. In Section 4.2
we could show that mCKA(ẽ4) applied to a HyPlant acquisition from SEL-
2018 yielded a mean reconstruction performance of ϵ < 3.15% as compared
to the result of the finetuned mSEL(ẽ4) of ϵ < 2.31%. In addition to the
reconstruction performance being similar, Section 4.3 could establish that the
non-finetuned backbone predictor PRE could estimate SIF outperforming the
SFM, iFLD and SFMNN baselines in some of the validation data sets. The
SEL-2018 data set is similar to CKA-2020 on which mCKA(ẽ4) was finetuned.
Its hagl and hgnd ranges are overlapping. Furthermore, both data sets cover
predominantly agricultural fields and exhibit only a small fraction of forested
areas such that mCKA(ẽ4) and mSEL(ẽ4) are trained with a similar spectral
surface composition. However, the data sets were acquired in different years
resulting in varying radiometric sensor calibrations associated with a mean
uncertainty of 3%. These results indicate that EmSFMNN generalizes well
across HyPlant data sets with large similarities.

Furthermore, a generalization capability of EmSFMNN across topographic
changes could be established in Section 4.4. We could show thatmCKA(ẽ4),
which was finetuned on data exhibiting only small topographic variation, had
an improved reconstruction performance over an EmSFMNN instance that
was finetuned on the full topographic range present in TOPO. We interpret
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this finding such that the learned feature space successfully disentangles fea-
tures that are unrelated to the topographic change and the associated optical
path length differences (i.e. the reflectance and SIF emission). This in turn
is corroborated by the observation that both the statistical distribution of
the predicted SIF emission as well as of the reflectance are constant across
the full topographic range.

The possibility to base the inference of SIF in new data on a single gener-
alized SIF retrieval model is an advantage of the feature based optimization
of EmSFMNN over other physical SIF retrieval methods for which a repeated
pixelwise or campaign-wise optimization has to be conducted. While we have
not conducted validation studies on completely new data sources, that were
not included in the pretraining or finetuning training data, we could show
that the EmSFMNN could be finetuned successfully to a range of HyPlant
data sets without complete retraining. If the importance of finetuning on
the SIF prediction performance could be better quantified and reduced, the
emulator based SIF retrieval method developed here could therefore prove to
be a useful contribution to efficient SIF retrieval method for hyperspectral
high-throughput imaging sensors where inference speed is critical.

6. Conclusion

In this work, we have applied EmSFMNN, a novel emulation-based SIF
retrieval method first presented by [25], to HyPlant FLUO acquisitions.
EmSFMNN utilizes feature-based optimization and hyperspectral RTM em-
ulation to disentangle the fluorescence signal from the at-sensor radiance. It
has first been introduced in an application with DESIS data [25]. We have
proposed an extension to the originally purely polynomial model used for DE-
SIS to represent spectrally explicit CW and FWHM shifts computationally
efficiently. This has allowed for the training of EmSFMNN on a significant
fraction of the totality of available HyPlant acquisitions.

The direct SIF validation with in-situ SIF estimates derived from FLOX
measurements has shown that the accuracy of finetuned EmSFMNN outper-
forms both SFMNN as well as traditional baseline methods (SFM, iFLD).
Importantly, we could also show that a pretrained backbone EmSFMNN pre-
dictor generalized well across the considered HyPlant campaigns such that
improved EmSFMNN SIF retrievals could be achieved at a smaller compu-
tational cost than traditional pixel-wise optimization. The computational
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efficiency of this approach is due to the feature-based nature of EmSFMNN
that allows a single model to be used for inference without prior finetuning.

Furthermore, in an analysis with HyPlant acquisition with strong topo-
graphic variability, we could show that the set-up allows for a generalization
of the application domain of SIF retrieval. The possibility to constrain the
retrieval by exact topography and geometrical information has allowed the
application of EmSFMNN to HyPlant acquisitions with strong topographic
variation where prior retrieval algorithms could not be applied in a straight-
forward fashion.

Finally, we have presented a small comparison of EmSFMNN predicted
AOT550 with high-fidelity CIMEL AOT550 measurements in a single cam-
paign data set consisting of 13 acquisitions giving first insights into the accu-
racy of the atmospheric characterization estimated by EmSFMNN. We found
a consistent variation of predicted AOT550 with the measurements which sup-
ports the hypothesis that the disentangling of reflectance, fluorescence and
atmospheric components as predicted by EmSFMNN is trustworthy. Further
work is, however, necessary to assess EmSFMNN’s performance in predicting
secondary atmospheric components in general observation conditions.

As HyPlant FLUO is the airborne demonstrator for the spaceborne FLORIS
sensor, that will be operated onboard ESA’s Earth Explorer mission, this
work is relevant for further research in computationally efficient SIF re-
trieval algorithms for data acquired by FLORIS. While [25] have shown how
EmSFMNN could be applied to radiance data acquired on a spaceborne plat-
form, in this work we have focused specifically on the requirements of HyPlant
FLUO, a sensor comparable to FLORIS. The encouraging results in terms of
precision in both DESIS and HyPlant FLUO suggest that EmSFMNN may
be successfully applied to FLORIS data as well.
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[52] Jülich Supercomputing Centre, JURECA: Data centric and booster
modules implementing the modular supercomputing architecture at
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